Тонкостенное литье под давлением (Thin-Wall Injection Molding) характеризуется кокой скоростью впрыска и высоким давлением. Ее используют в получении изделий с номинальной толщиной менее 1,2 мм или изделий, у которых отношение толщины стенок к длине составляет от 100:1 до 150:1 или более. Данные ограничения на толщину стенок и экстремальные условия переработки сужают рамки параметров технологического процесса.
Тем не менее, концепция тонкостенного литья получила большие распространение и популярность, из-за снижения толщины стенок, которое приводит к уменьшению веса, экономии сырья и значительному сокращению времени охлаждения в таких областях применения, как корпуса компьютерных мониторов, приборные и другие панели автомобилей, телекоммуникации, карманные компьютеры и ноутбуки, мобильные телефоны. Эти портативные устройства требуют пластмассовых корпусов, которые должны быть как можно более легкими и тонкими (менее 1,2 мм), а также обеспечивать ту же самую прочность, что и обычные изделия. Другим революционным приложением для тонкостенного литья является производство изделий с микроструктурой поверхности для медицинской, оптической и электронной промышленности.
_ _ _ _ _ _ _ _
Производство резиновых изделий. Отчественные аналоги зарубежных производителей. Полиуретановые и резиновые уплотнения Simrit.
_ _ _ _ _ _ _ _
Описание процесса
Термин «тонкостенное литье» не совсем отражает суть процесса. Обычные пластмассовые изделия имеют толщину от 2 до 4 мм. Тонкостенной конструкция считается, если толщина стенок составляет менее 1,2 мм. Другое определение тонкостенного литья основано на соотношении длины течения полимера к толщине стенок изделия.
Типичные соотношения для тонкостенных отливок лежат в диапазоне от 100:1 до 150:1 или более. Вне зависимости от определений тонкостенные изделия получаются при более ограниченном распространении потока по сравнению с традиционными отливками. В результате они быстро затвердевают в процессе литья.
Чтобы преодолеть эти трудности, изготовители полимерных изделий часто пытаются повысить температуру расплава на 38-65 0С выше рекомендуемого диапазона. Другим методом преодоления преждевременного затвердевания является впрыскивание материала со скоростью на порядок больше, чем в традиционной технологии (от 500 до 1400 мм/с). Для достижения большой скорости впрыска и нужного уплотнения требуется очень высокое
давление впрыска (от 2400 до 3000 бар).
Данные ограничения на толщину и экстремальные условия переработки сужают область варьирования параметров процесса. Применение холодноканальной литниковой системы при тонкостенном литье неэффективно из-за большого времени охлаждения литников и значительных потерь давления расплава в литниковой системе. По этой причине для литья тонкостенных изделий используют горячеканальные литниковые системы, или, реже, – для термически стабильных материалов — системы с незастывающими литниками, которые имеют меньшую стоимость, но при этом и менее надежны в работе.
Время заполнения литьевой формы при тонкостенном литье составляет от 0,1 до 0,5 с (в традиционном литье около 2 с). Поскольку в тонкостенном литье требуется меньший объем впрыска, то машины с цилиндром стандартного размера будут иметь слишком большую емкость. Это приводит к тому, что возникает необходимость изготовления специальных цилиндров, позволяющих избежать повышенного времени пребывания расплава в цилиндре и избыточных температур расплава, а следовательно, термической деструкции. Из-за высоких скорости расплава и скорости сдвига в тонкостенном литье ориентация молекул происходит легче. Чтобы свести к минимуму анизотропную усадку в тонкостенных изделиях, очень важно осуществлять уплотнение изделия в нужный момент, когда внутренний объем изделия находится в расплавленном состоянии. Впускные литники большого сечения (по сравнению с толщиной стенок изделия) необходимы, чтобы обеспечить достаточный поток материала во время уплотнения. Кроме того, места впуска должны быть расположены таким образом, чтобы поток направлялся от участков большей толщины к участкам меньшей толщины.
В тонкостенном литье крайне важна конструкция системы выталкивания. Во-первых, тонкостенные изделия более подвержены остаточной деформации во время извлечения. Во-вторых, чтобы увеличить жесткость изделий, в их конструкции предусматривают упрочняющие ребра, которые требуют большего усилия выталкивания и усложненной конструкции системы выталкивания. В-третьих, изделие имеет тенденцию прилипать к стенкам литьевой формы из-за высокой скорости впрыска и высокого давления уплотнения.
Наконец, если не продумана конструкция толкателей, изделия могут деформироваться или даже ломаться в процессе извлечения. Тонкостенные изделия для устройств электронной или телекоммуникационных отраслей промышленности должны иметь одновременно привлекательный внешний вид (плавные линии, нестандартный дизайн) и жесткость. Стратегии получения противоударных корпусов включают в себя использование неармированных пластмассовых корпусов, которые будут демпфировать нагрузку, армированных термопластов, передающих воздействие другим частям изделия, или использование технологии двухкомпонентного литья для того, чтобы нанести защитный слой термопластичного эластомера.
Преимущества
Тонкостенное литье позволяет снижать вес изделия, экономить материал и существенно сокращать время охлаждения отливки. В частности, в процессах традиционного литья под давлением время цикла обычно составляют от 30 до 60 с, а в тонкостенном литье оно сокращается до 6-20 с. Это приводит к значительному снижению производственных затрат.
Недостатки
Тонкостенное литье — более сложный процесс с технической точки зрения, чем традиционное литье под давлением, из-за трудностей в распространении потока, требований к параметрам процесса переработки. Оно также требует прочного, дорогого оборудования и, возможно, модифицированных или специальных машин для литья, обеспечивающих высокую скорость и высокое давление впрыска. Наконец, высокий уровень скорости сдвига, который является следствием высокой скорости впрыска, вызывает деструкцию расплава, индуцированную сдвиговыми напряжениями, что наблюдалось по уменьшению напряжения разрушения при проведении испытаний на разрыв.
Материалы
Для тонкостенного литья может применяться большинство термопластичных материалов, однако наиболее часто применяются ПК, АБС, смеси ПК/АБС и ПА 6. Возможно, это связано с тем, что при уменьшении толщины стенок возникает необходимость в материалах с лучшими физическими характеристиками, чтобы добиваться определенной прочности изделий.
Типичные направления применения
Тонкостенное литье наиболее популярно в отраслях производства портативных телекоммуникационных устройств и компьютерного оборудования. Причем изделия должны
иметь настолько тонкие стенки, насколько это возможно, чтобы сохранить механическую прочность, как у изделий, отлитых по стандартной технологии. К типичным изделиям, полученным тонкостенным литьем, относятся: мобильные телефоны, пейджеры, корпуса ноутбуков, передние панели автомобильных аудиоколонок, микрозажимы для хирургии, электронные разъемы, а также оптические носители информации.
пятница, 12 июня 2009 г.
Engel поставил в Россию первую полностью электрическую машину

В апреле этого года ООО Энгель поставила первый полностью электрический термопластавтомат Engel серии e-max в Россию. Поставленная машина - Engel e-max - будет производить корпуса водощетчиков на заводе в Татарстане.
Термопластавтоматы Engel серии e-max отличаются высокой производительностью, точностью и эффективностью использования энергии, а также минимальной площадью для установки.
Фирма Engel Austria GmbH – крупнейший мировой производитель оборудования для переработки пластмасс методом литья под давлением. Фирма поставляет весь спектр оборудования: термопластавтоматы для литья изделий из пластмасс, машины для переработки резины и силикона, роботы и средства автоматизации, запасные части и расходные материалы, а также разрабатывает специальные технологические решения для производства автокомпонентов, упаковки, медицинских и технических изделий.
Подобное оборудование так же поставлялось на ООО "ВЗРТИ" http://spec-ring.ru
понедельник, 1 июня 2009 г.
Механотермоформование
При реализации процессов механотермоформования время формообразования изделия (а следовательно, и скорость деформирования заготовки) определяется скоростью перемещения формующего инструмента 4, при этом оптимальный выбор последней обусловлен теми же проблемами, которые характерны и для других, рассмотренных ранее, методов формования.
Как уже отмечалось, скорость охлаждения отформованных изделий, определяемая временем их охлаждения в известном интервале температур, влияет на величину остаточных напряжений в материале. Относительно быстрое охлаждение отформованного изделия снижает время цикла его производства, но приводит к «замораживанию» остаточных напряжений в материале, в результате чего изделие имеет малую формоустойчивость при эксплуатации. При относительно медленном охлаждении остаточные напряжения частично релаксируют, повышая формоустойчивость изделия, но при этом возрастает время цикла производства последнего.
Известно, что полимерные материалы обладают относительно низкой теплопроводностью. Поэтому эффективность охлаждения отформованных изделий существенным образом зависит от реализуемых на практике условий переноса теплоты от охлаждаемого полимерного материала к охлаждающей среде.
Время охлаждения изделия существенным образом зависит от среднеинтегрального значения толщины его стенки. Последнее понятие вводят в связи с тем, что деформирование плоских заготовок при формообразовании из них изделий характеризуется значительной неоднородностью, в результате чего отформованные изделия обладают весьма ощутимой разнотолщинностью (неоднородностью толщины стенок). Разнотолщинность полимерных изделий ухудшает их товарный вид и такие важные эксплуатационные характеристики как прочность, жёсткость, паро- и газонепроницаемость. Разнотолщинность формуемых изделий практически не зависит от свойств перерабатываемых полимеров, но существенно зависит от реализуемого метода формования и геометрии изделий.
Время технологического или рабочего цикла производства того или иного вида изделий зависит, прежде всего, от реализуемого метода их формования, используемого оборудования и может включать в себя самые разнообразные элементы.
Как уже отмечалось, скорость охлаждения отформованных изделий, определяемая временем их охлаждения в известном интервале температур, влияет на величину остаточных напряжений в материале. Относительно быстрое охлаждение отформованного изделия снижает время цикла его производства, но приводит к «замораживанию» остаточных напряжений в материале, в результате чего изделие имеет малую формоустойчивость при эксплуатации. При относительно медленном охлаждении остаточные напряжения частично релаксируют, повышая формоустойчивость изделия, но при этом возрастает время цикла производства последнего.
Известно, что полимерные материалы обладают относительно низкой теплопроводностью. Поэтому эффективность охлаждения отформованных изделий существенным образом зависит от реализуемых на практике условий переноса теплоты от охлаждаемого полимерного материала к охлаждающей среде.
Время охлаждения изделия существенным образом зависит от среднеинтегрального значения толщины его стенки. Последнее понятие вводят в связи с тем, что деформирование плоских заготовок при формообразовании из них изделий характеризуется значительной неоднородностью, в результате чего отформованные изделия обладают весьма ощутимой разнотолщинностью (неоднородностью толщины стенок). Разнотолщинность полимерных изделий ухудшает их товарный вид и такие важные эксплуатационные характеристики как прочность, жёсткость, паро- и газонепроницаемость. Разнотолщинность формуемых изделий практически не зависит от свойств перерабатываемых полимеров, но существенно зависит от реализуемого метода формования и геометрии изделий.
Время технологического или рабочего цикла производства того или иного вида изделий зависит, прежде всего, от реализуемого метода их формования, используемого оборудования и может включать в себя самые разнообразные элементы.
Вакуум-формование
При реализации процессов вакуум-формования из замкнутой рабочей камеры вакуумформовочной машины с установленной в ней на подвижном столе формующей оснасткой эвакуируют находящуюся там газовую среду, создавая, таким образом, перепад давления между наружной и внутренней поверхностями плоской заготовки.
Последняя, деформируясь под действием возникшей движущей силы, входит в контакт с формообразующими поверхностями формующего инструмента (матриц, пуансонов и т.п.), что и обеспечивает реализацию процесса формообразования изделия. Как и при пневмоформовании, скорость деформирования заготовок при вакуумном их формовании зависит от времени формообразования изделия.
Во-первых, следует отметить, что не во всех случаях вакуум-формовочное оборудование способно обеспечить стабильное удержание создаваемого в рабочей камере разряжения (а следовательно, и перепада давления) в процессе формования изделий. Известно, что стабильное удержание создаваемого разряжения возможно только в тех случаях, когда объём ресивера, куда эвакуируется газ из рабочей камеры, превосходит его исходный объём не менее, чем в восемь раз.
Во-вторых, если при естественных (атмосферных) условиях, указанное условие реализации процесса вакуумформования не выполняется, то необходимо прибегнуть к комбинированному - пневмовакуумному методу его формования, для чего необходимо создать в рабочей камере оборудования и над внешней поверхностью заготовки исходное избыточное давление.
С учётом изложенного нетрудно уяснить, что технологическое время формообразования изделий из плоских заготовок при вакуумном методе их производства зависит не только от свойств перерабатываемых полимерных материалов, геометрических параметров используемых заготовок и формуемых изделий, термодинамических параметров газовых рабочих сред, но также существенным образом определяется и некоторыми конструктивными параметрами применяемого оборудования и формующего инструмента.
Последняя, деформируясь под действием возникшей движущей силы, входит в контакт с формообразующими поверхностями формующего инструмента (матриц, пуансонов и т.п.), что и обеспечивает реализацию процесса формообразования изделия. Как и при пневмоформовании, скорость деформирования заготовок при вакуумном их формовании зависит от времени формообразования изделия.
Во-первых, следует отметить, что не во всех случаях вакуум-формовочное оборудование способно обеспечить стабильное удержание создаваемого в рабочей камере разряжения (а следовательно, и перепада давления) в процессе формования изделий. Известно, что стабильное удержание создаваемого разряжения возможно только в тех случаях, когда объём ресивера, куда эвакуируется газ из рабочей камеры, превосходит его исходный объём не менее, чем в восемь раз.
Во-вторых, если при естественных (атмосферных) условиях, указанное условие реализации процесса вакуумформования не выполняется, то необходимо прибегнуть к комбинированному - пневмовакуумному методу его формования, для чего необходимо создать в рабочей камере оборудования и над внешней поверхностью заготовки исходное избыточное давление.
С учётом изложенного нетрудно уяснить, что технологическое время формообразования изделий из плоских заготовок при вакуумном методе их производства зависит не только от свойств перерабатываемых полимерных материалов, геометрических параметров используемых заготовок и формуемых изделий, термодинамических параметров газовых рабочих сред, но также существенным образом определяется и некоторыми конструктивными параметрами применяемого оборудования и формующего инструмента.
Пневматический метод
При пневматических методах формования изделий такие технологические параметры этих процессов, как текущие значения необходимого для их реализации перепада давления, скорости формования (формообразования) изделия, которое определяется временем, и давление сжатого газа, истекающего в рабочую полость, являются взаимосвязанными.
Реализуемый при формовании изделия текущий рабочий перепад давления определяется эластическими характеристиками полимерного материала, толщиной стенки исходной заготовки, а также развивающимися в процессе её формования в изделие эластическими деформациями. Использование "жестких" полимерных материалов или исходных заготовок, имеющих относительно большую толщину, требует создания и относительно больших перепадов давления, обеспечивающих достаточную проформовку изделия.
При "мягком" материале или тонкостенных заготовках создание высоких скоростей их деформирования может приводить к механическому разрушению (разрыву) последних в процессе формования изделий.
При реализации процессов пневмоформования в замкнутую рабочую полость, как минимум одной из поверхностей которой является поверхность плоской заготовки с находящимся там исходным газом, подают рабочую (сжатую) газовую среду, которая, в общем случае, может и не быть идентична исходной газовой среде. На практике, как правило, исходная и рабочая газовые среды идентичны.
На основании изложенного нетрудно уяснить, что время формообразования изделия определяется не только рабочим перепадом давления, который, в общем случае, зависит от свойств перерабатываемого материала, геометрических параметров исходной заготовки и формуемого изделия, термодинамических параметров используемых газовых сред, а также некоторых конструктивных параметров применяемого оборудования и пневмокоммуникационных систем.
Максимально допустимое время формообразования изделия определяется остыванием заготовки в процессе её деформирования: температура заготовки не должна успеть снизиться до такого уровня, при котором проформовка изделия станет невозможной. Минимальное время формообразования изделия определяется предельно возможными скоростями деформации заготовки, при которых может наступить разрыв материала.
Реализуемый при формовании изделия текущий рабочий перепад давления определяется эластическими характеристиками полимерного материала, толщиной стенки исходной заготовки, а также развивающимися в процессе её формования в изделие эластическими деформациями. Использование "жестких" полимерных материалов или исходных заготовок, имеющих относительно большую толщину, требует создания и относительно больших перепадов давления, обеспечивающих достаточную проформовку изделия.
При "мягком" материале или тонкостенных заготовках создание высоких скоростей их деформирования может приводить к механическому разрушению (разрыву) последних в процессе формования изделий.
При реализации процессов пневмоформования в замкнутую рабочую полость, как минимум одной из поверхностей которой является поверхность плоской заготовки с находящимся там исходным газом, подают рабочую (сжатую) газовую среду, которая, в общем случае, может и не быть идентична исходной газовой среде. На практике, как правило, исходная и рабочая газовые среды идентичны.
На основании изложенного нетрудно уяснить, что время формообразования изделия определяется не только рабочим перепадом давления, который, в общем случае, зависит от свойств перерабатываемого материала, геометрических параметров исходной заготовки и формуемого изделия, термодинамических параметров используемых газовых сред, а также некоторых конструктивных параметров применяемого оборудования и пневмокоммуникационных систем.
Максимально допустимое время формообразования изделия определяется остыванием заготовки в процессе её деформирования: температура заготовки не должна успеть снизиться до такого уровня, при котором проформовка изделия станет невозможной. Минимальное время формообразования изделия определяется предельно возможными скоростями деформации заготовки, при которых может наступить разрыв материала.
ТЕМПЕРАТУРА ТЕРМОФОРМОВАНИЯ
Основными технологическими параметрами, определяющими протекание процессов термоформования изделий из плоских полимерных заготовок и влияющими в конечном итоге на качество готовой продукции, являются: температура используемой заготовки, температура формующего инструмента, рабочий перепад давления при формовании, скорость формования, скорость охлаждения отформованной заготовки, геометрия формуемого изделия, свойства используемого полимерного сырья, свойства и термодинамические параметры рабочих сред и др.
Поскольку процессы переработки полимеров в изделия и детали являются, прежде всего, деформационными, то выбор оптимальной температуры для каждого конкретного метода их переработки должен, учитывая его специфику, основываться на особенностях деформационного поведения используемых материалов.
Если полимерный материал нагреть до температуры, превышающей температуру его стеклования, то он переходит в следующее релаксационное состояние – высокоэластическое, когда появляется подвижность отдельных сегментов макромолекулярной цепи полимера, а материал становится более мягким и эластичным. Однако ещё стабильно существующие в его структуре надмолекулярные образования, например микроблоки, препятствуют относительному смещению молекулярных цепей в целом. Приложение в таком состоянии к полимеру внешней нагрузки приводит к изменению (уменьшению) конфигурационной энтропии состояния макромолекул, которые, "разворачиваясь" из статистического клубка, лишь ориентируются в направлении приложенной нагрузки, при этом тепловое движение звеньев цепи противодействует внешней нагрузке. При снятии нагрузки цепи возвращаются в исходное состояние, а следовательно, высокоэластическая деформация также, как и упругая, является полностью обратимой.
При дальнейшем нагревании полимера выше некоторой температуры, называемой температурой текучести, надмолекулярные образования становятся столь нестабильными, что появляется возможность в относительном смещении цепей макромолекул друг относительно друга при приложении к нему внешней нагрузки. Последнее обстоятельство и обеспечивает течение полимерных сред в этом состоянии, при этом деформации течения являются необратимыми, а само состояние полимера называют вязкотекучим. Особо следует отметить, что деформирование полимеров в вязкотекучем релаксационном состоянии вовсе не означает того, что развивающиеся в них деформации являются исключительно деформациями течения.
В зависимости от режимов и кинематики деформирования, реологических свойств полимерных сред в последних, наряду с деформациями течения, развиваются и высокоэластические деформации определённого уровня.
Поскольку все процессы термоформования предусматривают стадию разогрева заготовки, поверхность которой находится в свободном состоянии, то, чтобы заготовка не имела возможности сильно деформироваться на этой технологической стадии под действием гравитационных сил, её разогрев ведут до момента достижения полимером высокоэластического состояния. Нагревание заготовки до вязкотекучего состояния приводит к её достаточно быстрой гравитационной вытяжке (провисанию) и, как следствие, к невозможности реализации стадии формования изделия. С другой стороны, температура формуемой заготовки не должна находиться вблизи границы стеклообразного и высокоэластического состояний полимера, поскольку при формовании изделия в этом случае возможна неполная его проформовка.
Таким образом, рабочая температура формуемой полимерной заготовки является одним из основных технологических параметров, определяющих реализацию процессов термоформования.
Кроме того, следует отметить важность реализации самого процесса разогрева заготовок. Во-первых, этот процесс достаточно длителен и составляет примерно
50-80% общего времени цикла формования изделия. Во-вторых, разогрев заготовок следует вести так, чтобы температура во всех точках их поверхности в любой момент времени была одинакова. Неравномерный разогрев ведет к неравномерному деформированию заготовки в процессе её формования в изделие и образованию складок на поверхности последнего. В результате неравномерного разогрева на поверхности заготовки могут образовываться отдельные перегретые области, а при формовании в этих областях может произойти разрыв заготовки.
Температура формующего инструмента влияет на процесс охлаждения отформованного изделия. Очевидно, что она должна быть ниже температуры стеклования полимера, иначе достаточного охлаждения заготовки не произойдет, и изделие может потерять свою форму. Также очевидно, что чем ниже температура формующего инструмента, тем быстрее охлаждение и выше производительность формовочного оборудования. Но при очень низкой температуре формующего инструмента на поверхности отформованного изделия появляются пятна переохлаждения, и повышается его склонность к короблению.
Поскольку процессы переработки полимеров в изделия и детали являются, прежде всего, деформационными, то выбор оптимальной температуры для каждого конкретного метода их переработки должен, учитывая его специфику, основываться на особенностях деформационного поведения используемых материалов.
Если полимерный материал нагреть до температуры, превышающей температуру его стеклования, то он переходит в следующее релаксационное состояние – высокоэластическое, когда появляется подвижность отдельных сегментов макромолекулярной цепи полимера, а материал становится более мягким и эластичным. Однако ещё стабильно существующие в его структуре надмолекулярные образования, например микроблоки, препятствуют относительному смещению молекулярных цепей в целом. Приложение в таком состоянии к полимеру внешней нагрузки приводит к изменению (уменьшению) конфигурационной энтропии состояния макромолекул, которые, "разворачиваясь" из статистического клубка, лишь ориентируются в направлении приложенной нагрузки, при этом тепловое движение звеньев цепи противодействует внешней нагрузке. При снятии нагрузки цепи возвращаются в исходное состояние, а следовательно, высокоэластическая деформация также, как и упругая, является полностью обратимой.
При дальнейшем нагревании полимера выше некоторой температуры, называемой температурой текучести, надмолекулярные образования становятся столь нестабильными, что появляется возможность в относительном смещении цепей макромолекул друг относительно друга при приложении к нему внешней нагрузки. Последнее обстоятельство и обеспечивает течение полимерных сред в этом состоянии, при этом деформации течения являются необратимыми, а само состояние полимера называют вязкотекучим. Особо следует отметить, что деформирование полимеров в вязкотекучем релаксационном состоянии вовсе не означает того, что развивающиеся в них деформации являются исключительно деформациями течения.
В зависимости от режимов и кинематики деформирования, реологических свойств полимерных сред в последних, наряду с деформациями течения, развиваются и высокоэластические деформации определённого уровня.
Поскольку все процессы термоформования предусматривают стадию разогрева заготовки, поверхность которой находится в свободном состоянии, то, чтобы заготовка не имела возможности сильно деформироваться на этой технологической стадии под действием гравитационных сил, её разогрев ведут до момента достижения полимером высокоэластического состояния. Нагревание заготовки до вязкотекучего состояния приводит к её достаточно быстрой гравитационной вытяжке (провисанию) и, как следствие, к невозможности реализации стадии формования изделия. С другой стороны, температура формуемой заготовки не должна находиться вблизи границы стеклообразного и высокоэластического состояний полимера, поскольку при формовании изделия в этом случае возможна неполная его проформовка.
Таким образом, рабочая температура формуемой полимерной заготовки является одним из основных технологических параметров, определяющих реализацию процессов термоформования.
Кроме того, следует отметить важность реализации самого процесса разогрева заготовок. Во-первых, этот процесс достаточно длителен и составляет примерно
50-80% общего времени цикла формования изделия. Во-вторых, разогрев заготовок следует вести так, чтобы температура во всех точках их поверхности в любой момент времени была одинакова. Неравномерный разогрев ведет к неравномерному деформированию заготовки в процессе её формования в изделие и образованию складок на поверхности последнего. В результате неравномерного разогрева на поверхности заготовки могут образовываться отдельные перегретые области, а при формовании в этих областях может произойти разрыв заготовки.
Температура формующего инструмента влияет на процесс охлаждения отформованного изделия. Очевидно, что она должна быть ниже температуры стеклования полимера, иначе достаточного охлаждения заготовки не произойдет, и изделие может потерять свою форму. Также очевидно, что чем ниже температура формующего инструмента, тем быстрее охлаждение и выше производительность формовочного оборудования. Но при очень низкой температуре формующего инструмента на поверхности отформованного изделия появляются пятна переохлаждения, и повышается его склонность к короблению.
ОСНОВНЫЕ МЕТОДЫ ТЕРМОФОРМОВАНИЯ
Осуществление методов термоформования довольно просты: листовую или плёночную полимерную заготовку разогревают до температуры высокоэластического состояния, а затем, деформируя её различными способами, придают последней необходимую форму, фиксация которой осуществляется путём охлаждения формованного изделия.
В зависимости от способа создания движущей силы процесса деформирования заготовки в готовое изделие различают следующие методы термоформования пластмасс:
вакуумный
Пневматический
Гидравлический
Механический
комбинированный.
При вакуум-формовании плоскую заготовку из термопластичного полимерного материала, прижатую по периметру к рабочей камере вакуум-формовочной машины прижимной рамой, сначала с помощью нагревательного устройства разогревают до высокоэластического состояния Затем в полости, образованной поверхностями заготовки и формующей матрицы (илиформующего пуансона), создают разряжение, в результате чего за счет возникающего перепада давления образуется изделие. После охлаждения изделия до температуры его формоустойчивости последнее извлекают из формующего инструмента (снимают с формующего инструмента), предварительно открыв прижимную раму.
Реализация процессов пневмоформования отличается от вакуумного формования только тем, что перепад давления создают за счёт использования в качестве рабочей среды сжатого газа, как правило, сжатого воздуха, с избыточным давлением до 2,5 МПа.
При гидравлическом формовании роль рабочей среды выполняет подогретая жидкость, нагнетаемая насосом под давлением 0,15–2,5 МПа.
Механическое формование (механотермоформование) отличается от процессов пневматического формования тем, что придание плоской разогретой заготовке формы готового изделия осуществляется за счёт её механической вытяжки металлическим пуансоном.
Следует отметить, что современные технологии производства предусматривают и совмещение разных методов формования изделий, например пневмовакуумное, пневмомеханическое и т.п.
Среди всех видов пневмо- и вакуум-формования можно выделить три основных: позитивное, негативное и свободное. При позитивном формовании (формование на пуансоне) внутренняя поверхность изделия в точности воспроизводит форму или рисунок формующего инструмента. Негативное формование (формование в матрице) даёт возможность получать изделия, наружная поверхность которых в точности воспроизводит форму или рисунок внутренней поверхности матрицы. Свободное формование осуществляют в пройме прижимной рамы машины без использования формующего инструмента. Кроме перечисленных основных, существуют и другие разновидности технологических процессов термоформования изделий из плоских полимерных заготовок.
В зависимости от способа создания движущей силы процесса деформирования заготовки в готовое изделие различают следующие методы термоформования пластмасс:
вакуумный
Пневматический
Гидравлический
Механический
комбинированный.
При вакуум-формовании плоскую заготовку из термопластичного полимерного материала, прижатую по периметру к рабочей камере вакуум-формовочной машины прижимной рамой, сначала с помощью нагревательного устройства разогревают до высокоэластического состояния Затем в полости, образованной поверхностями заготовки и формующей матрицы (илиформующего пуансона), создают разряжение, в результате чего за счет возникающего перепада давления образуется изделие. После охлаждения изделия до температуры его формоустойчивости последнее извлекают из формующего инструмента (снимают с формующего инструмента), предварительно открыв прижимную раму.
Реализация процессов пневмоформования отличается от вакуумного формования только тем, что перепад давления создают за счёт использования в качестве рабочей среды сжатого газа, как правило, сжатого воздуха, с избыточным давлением до 2,5 МПа.
При гидравлическом формовании роль рабочей среды выполняет подогретая жидкость, нагнетаемая насосом под давлением 0,15–2,5 МПа.
Механическое формование (механотермоформование) отличается от процессов пневматического формования тем, что придание плоской разогретой заготовке формы готового изделия осуществляется за счёт её механической вытяжки металлическим пуансоном.
Следует отметить, что современные технологии производства предусматривают и совмещение разных методов формования изделий, например пневмовакуумное, пневмомеханическое и т.п.
Среди всех видов пневмо- и вакуум-формования можно выделить три основных: позитивное, негативное и свободное. При позитивном формовании (формование на пуансоне) внутренняя поверхность изделия в точности воспроизводит форму или рисунок формующего инструмента. Негативное формование (формование в матрице) даёт возможность получать изделия, наружная поверхность которых в точности воспроизводит форму или рисунок внутренней поверхности матрицы. Свободное формование осуществляют в пройме прижимной рамы машины без использования формующего инструмента. Кроме перечисленных основных, существуют и другие разновидности технологических процессов термоформования изделий из плоских полимерных заготовок.
Подписаться на:
Сообщения (Atom)